Product Code Database
Example Keywords: resident evil -grand $70-140
barcode-scavenger
   » » Wiki: Enneper Surface
Tag Wiki 'Enneper Surface'.
Tag

Enneper surface
 (

In differential geometry and algebraic geometry, the Enneper surface is a self-intersecting surface that can be described by: \begin{align}

x &= \tfrac{1}{3} u \left(1 - \tfrac{1}{3}u^2 + v^2\right), \\
y &= \tfrac{1}{3} v \left(1 - \tfrac{1}{3}v^2 + u^2\right), \\
z & = \tfrac{1}{3} \left(u^2 - v^2\right). \end{align}
     
It was introduced by in 1864 in connection with theory.J.C.C. Nitsche, "Vorlesungen über Minimalflächen", Springer (1975) Francisco J. López, Francisco Martín, Complete minimal surfaces in R3Ulrich Dierkes, Stefan Hildebrandt, Friedrich Sauvigny (2010). Minimal Surfaces. Berlin Heidelberg: Springer. .

The Weierstrass–Enneper parameterization is very simple, f(z)=1, g(z)=z, and the real parametric form can easily be calculated from it. The surface is to itself.

Implicitization methods of algebraic geometry can be used to find out that the points in the Enneper surface given above satisfy the degree-9 equation \begin{align} & 64 z^9 - 128 z^7 + 64 z^5 - 702 x^2 y^2 z^3 - 18 x^2 y^2 z + 144 (y^2 z^6 - x^2 z^6)\\ & {} + 162 (y^4 z^2 - x^4 z^2) + 27 (y^6 - x^6) + 9 (x^4 z + y^4 z) + 48 (x^2 z^3 + y^2 z^3)\\ & {} - 432 (x^2 z^5 + y^2 z^5) + 81 (x^4 y^2 - x^2 y^4) + 240 (y^2 z^4 - x^2 z^4) - 135 (x^4 z^3 + y^4 z^3) = 0. \end{align}

Dually, the at the point with given parameters is a + b x + c y + d z = 0,\ where \begin{align} a &= -\left(u^2 - v^2\right) \left(1 + \tfrac{1}{3}u^2 + \tfrac{1}{3}v^2\right), \\ b &= 6 u, \\ c &= 6 v, \\ d &= -3\left(1 - u^2 - v^2\right). \end{align} Its coefficients satisfy the implicit degree-6 polynomial equation \begin{align} &162 a^2 b^2 c^2 + 6 b^2 c^2 d^2 - 4 (b^6 + c^6) + 54 (a b^4 d - a c^4 d) + 81 (a^2 b^4 + a^2 c^4)\\ &{} + 4 (b^4 c^2 + b^2 c^4) - 3 (b^4 d^2 + c^4 d^2) + 36 (a b^2 d^3 - a c^2 d^3) = 0. \end{align}

The Jacobian, Gaussian curvature and are \begin{align}

J &= \frac{1}{81}(1 + u^2 + v^2)^4, \\
K &= -\frac{4}{9}\frac{1}{J}, \\
H &= 0.
     
\end{align} The is -4\pi. proved that a complete minimal surface in \R^3 with total curvature -4\pi is either the or the Enneper surface.R. Osserman, A survey of Minimal Surfaces. Vol. 1, Cambridge Univ. Press, New York (1989).

The curves obtained by setting u=0 or v=0 are of the Enneper surface, and are copies of the Tschirnhausen cubic.

Another property is that all bicubical minimal Bézier surfaces are, up to an affine transformation, pieces of the surface.Cosín, C., Monterde, Bézier surfaces of minimal area. In Computational Science — ICCS 2002, eds. J., Sloot, Peter, Hoekstra, Alfons, Tan, C., Dongarra, Jack. Lecture Notes in Computer Science 2330, Springer Berlin / Heidelberg, 2002. pp. 72-81

It can be generalized to higher order rotational symmetries by using the Weierstrass–Enneper parameterization f(z) = 1, g(z) = z^k for integer k>1. It can also be generalized to higher dimensions; Enneper-like surfaces are known to exist in \R^n for n up to 7.Jaigyoung Choe, On the existence of higher dimensional Enneper's surface, Commentarii Mathematici Helvetici 1996, Volume 71, Issue 1, pp 556-569

Https://doi.org/10.3390/math6120281< /ref> Https://doi.org/10.3390/axioms11010004< /ref> for higher order algebraic Enneper surfaces.


External links

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
1s Time